
Control Systems Lab - Legged Team

Introductory task

Simulation Frameworks for prototype
robotic leg

National Technical University of Athens
School of Mechanical Engineering

Author: Michail Papadakis

July 20, 2025

Contents

Contents 1

List of Figures 3

List of Tables 4

1 Introduction 5

2 Creating a simplified 3D model 6
2.1 Kinematic Properties . 6

2.1.1 Geometric Quantities . 6
2.1.2 Kinematic Limits . 7

2.2 Dynamic Properties . 8
2.2.1 Inertial Quantities . 8
2.2.2 Remaining joint properties . 8

2.3 Collision Properties . 10

3 Leg Kinematics 11
3.1 Direct Kinematics . 11
3.2 Inverse Kinematics . 11
3.3 Direct Differential Kinematics - Geometric Jacobian 14

3.3.1 Singularities . 14

4 Gazebo Simulation Framework 16
4.1 leg description package and Leg library . 16
4.2 Leg control package . 16

4.2.1 Framework GUI and Documentation . 19

5 Simscape Simulation Framework 20
5.1 Framework structure . 20
5.2 Simscape simulation . 22

6 Analytical Modeling 23
6.1 General Methodology . 23
6.2 Calculating the Lagrangian . 24
6.3 Getting the B,C,G matrices . 25

6.3.1 Validating the methodology . 25
6.4 Validating the Euler Lagrange model . 25
6.5 Contact Force Modeling . 27
6.6 Controller Details . 29

6.6.1 PID controller . 29
6.6.2 Angular Distance . 29
6.6.3 Trajectory Generation . 30
6.6.4 Trajectory Controller . 30
6.6.5 Effort Controller . 30

7 Comparing the Frameworks 31
7.1 Position Control Comparison . 32
7.2 Trajectory Control Comparison . 36
7.3 Effort Control Comparison . 40

7.3.1 Explain contact force difference between simscape and custom contact model 45
7.4 Combined Task Comparison . 46

7.4.1 Explain delays between the matlab simulations and gazebo. 49

1

8 Appendix 50
8.1 Creating the cad model . 50
8.2 Cad model inertial properties from solidworks . 52
8.3 Inertial Conventions . 55
8.4 Actuator Inertia . 56
8.5 Basic simulation in the simscape framework . 58

8.5.1 Framework available commands . 59

9 References 60

2

List of Figures

1 Coordinate frames of the leg. 6
2 Calculation of joint 3 angle limit. 7
3 Inertial of the leg as visualized in gazebo. 8
4 Motor constant estimation. 9
5 Collision Geometry. 10
6 Geometric meaning of second singularity. 15
7 UML diagramm of Leg class. 16
8 UML diagrams of the controller classes. (The task controllers have a reference to

the same instance of Leg). 18
9 Gazebo Simulation Framework GUI. 19
10 Ros framework documentation example. 19
11 Simscape framework documentation. 20
12 UML diagram for the matlab-Simscape simulation framework. 21
13 Simscape simulation: Overview. 22
14 Simscape simulation components. 22
15 Comparison of angle position histories for the three joints for the simulation of an

actuated leg without the presence of gravity with initial conditions q = [0, 0, 0] and
q̇ = [0, 0, 0] in matlab and simscape. In the right side, there is a focus plot in order
to better showcase the deviation. 26

16 Simscape contact model. 27
17 Stick-slip friction model. 28
18 Difference between true point of contact of foot and end effector coordinate frame

origin. 28
19 Angle distance calculation example. 29
20 Zero position of the leg. 31
21 Comparison of joint position histories for the three joints for the simulation of the

Position Controller in matlab, simscape and gazebo. 32
22 Deviation plots of joint position histories for the three joints for the simulation of

the Position Controller in matlab, simscape and gazebo. 33
23 Comparison of joint velocities histories for the three joints for the simulation of the

Position Controller in matlab, simscape and gazebo. 33
24 Comparison of actuator torque histories for the three joints for the simulation of

the Position Controller in matlab, simscape and gazebo. 34
25 Focused plot, for comparison of actuator torque histories for the three joints for the

simulation of the Position Controller in matlab, simscape and gazebo. 34
26 Deviation plots of actuator torque histories for the three joints for the simulation

of the Position Controller in matlab, simscape and gazebo. 35
27 Comparison between the generated reference trajectories in matlab/simscape and

gazebo. 36
28 Comparison of joint position histories for the three joints for the simulation of the

Trajectory Controller in matlab, simscape and gazebo. 37
29 Deviation plots of joint position histories for the three joints for the simulation of

the Trajectory Controller in matlab, simscape and gazebo. 37
30 Comparison of joint velocities histories for the three joints for the simulation of the

Trajectory Controller in matlab, simscape and gazebo. 38
31 Comparison of joint torque histories for the three joints for the simulation of the

Trajectory Controller in matlab, simscape and gazebo. 38
32 Deviation plots of joint torque histories for the three joints for the simulation of the

Trajectory Controller in matlab, simscape and gazebo. 39
33 Leg starting position for effort control test. 40
34 Comparison of joint position histories for the three joints for the simulation of the

Effort Controller in matlab, simscape and gazebo. 40
35 Deviation plots of joint position histories for the three joints for the simulation of

the Effort Controller in matlab, simscape and gazebo. 41

3

36 Comparison of transient response of joint velocities for the three joints for the
simulation of the Effort Controller in matlab, simscape and gazebo. 42

37 Comparison of steady state of joint velocities for the three joints for the simulation
of the Effort Controller in matlab, simscape and gazebo. 42

38 Focused comparison of joint position histories for the three joints for the simulation
of the Effort Controller in matlab, simscape and gazebo. 43

39 Comparison of joint torque histories for the three joints for the simulation of the
Effort Controller in matlab, simscape and gazebo. 44

40 Comparison of the end effector contact force histories for the simulation of the
Effort Controller in matlab, simscape and gazebo. (The plot doesn’t show the
whole experiment, as at around 5ms, the forces reach a steady state.) 44

41 Comparison of joint position histories for the three joints for the simulation for a
combined position and effort control in matlab and simscape. 46

42 Deviation of joint position histories for the three joints for the simulation for a
combined position and effort control in matlab and simscape. 47

43 Comparison of joint torque histories for the three joints for the simulation for a
combined position and effort control in matlab and simscape. 47

44 Comparison of the end effector contact force histories for a combined position and
effort control in matlab and simscape. 48

45 Commands line output from the LegSim node. 49
46 Detailed comparison of joint torque histories for the three joints for the simulation

for a combined position and effort control in matlab, simscape and gazebo. 49
47 Connector parts. 50
48 Motor parts. 50
49 Link 2 parts. 51
50 Rest leg parts. 51
51 STL export settings. 52
52 Link 1 inertial properties. 52
53 Link 2 inertial properties. 53
54 Link 3 inertial properties. 54
55 Actuator rotor Inertia. (Rotors are shown in red color.) 57

List of Tables

1 Table with the geometric quantities that affect the leg kinematics. 6
2 DH parameters. 7
3 Limits and characterization of each leg joint. 7
4 Reductions of motors. 9
5 Model collision properties. 10
6 Leg initial simulations solver settings for matlab and simscape. 26
7 Leg simulations solver settings for matlab and simscape. 31
8 Leg simulations solver settings for gazebo. 31
9 Ellipse parameters. 36
10 Steady state velocity values for static effort control test. 42
11 Steady state contact forces values for static effort control test. 43
12 Steady state contact forces values for combined task control test. 48
13 Materials used. 50
14 Measured quantities for the cad modeling of the leg. 51

4

1. Introduction

The purpose of this introductory task is to create two simulation frameworks in ros using the gazebo
simulator and in simscape. To test these frameworks, two control tasks are to be simulated: a
static task in which the leg must exert a constant vertical force, and a dynamic task where the
leg must follow an elliptical trajectory. The two frameworks are validated using a custom-made
analytical model that simulates the same tasks and are compared with each other.

5

2. Creating a simplified 3D model

This section contains the geometric and dynamic properties of the leg and information regarding
their calculations or estimations. The model must contain the following characteristics:

• Kinematic properties (geometric distances and joint limits)

• Dynamic properties (inertial quantities, friction coefficients)

• Collision properties.

2.1 Kinematic Properties

2.1.1 Geometric Quantities

A simplified 3D cad model was created using some data from J. Valvis’s thesis [3] and mainly
from measurements from the real leg. In the appendix (section 8.1) more information for the 3d
modeling in solidworks is provided.

In figures 1a and 1b below, the final model is presented along with its coordinate systems1.
The main kinematic parameters are also displayed and their arithmetic values, which are obtained
from solidworks2, are presented in table 1.

(a) Front view. (b) Top view

Figure 1: Coordinate frames of the leg.

Table 1: Table with the geometric quantities that affect the leg kinematics.

H LB0 L01 L12 L23 L3E

400 55.55 77.63 112.08 253.1 223

1In Iro’s thesis [1], the z axis direction is such that the leg has to rotate in the negative direction in order to
touch the ground. The same convention was used in the current model.

2Height was chosen arbitrarily.

6

The Denavit-Hartenberg (DH) parameters3 in table 2, can be constructed using the above
information.

Table 2: DH parameters.

Link i a L d θ

1 0 0 −L01 q1
2 π/2 0 L12 −π/2 + q2
3 0 L23 0 q3
E 0 L3E 0 0

For the correct kinematic simulation, the lengths of table 1 must be measured exactly. Also,
from the previous analysis, it is implied that the zero position of the robot is equivalent to a fully
extended horizontal leg.

2.1.2 Kinematic Limits

Regarding the kinematic limits of each joint, it is observed that joints 1 and 2 are free to perform
infinite rotations. In contrast, the third joint collides with the second link, and is thus constrained.
However, it is logical to assume that joint 1 is also limited, as in reality it would collide with the
body of the quadruped robot.

The calculation of the angle limit of the third link is done based on figure 2:

Figure 2: Calculation of joint 3 angle limit.

Where:
L′ = 28.5mm, Lknee3 = 27.95mm

θlim = atan(
Lknee3/2

L′) = 0.45589 ≤ 0.456 (1)

θlim is chosen a bit greater (θlim = 0.456). Thus: |θ2| ≤ π − 2θlim ≈ 2.229
The joint limits are summarised in table 3:

Table 3: Limits and characterization of each leg joint.

q1 q2 q3
∈ [−π/2, π/2] ∈ R ∈ [−2.229, 2.229]
revolute joint continuous joint revolute joint

3It must be noted that the DH parameters are not directly used in the URDF. In the DH convention, the
rotations take place around the local axis, while in the URDF rotations take place around the axis of the previous
link.

7

2.2 Dynamic Properties

2.2.1 Inertial Quantities

Having defined the origin of the coordinate system of each link (in accordance with figures 1a and
1b) in the solidworks assemblies, it is easy to calculate the inertial properties of the links using
the Mass Properties tool.

Solidworks provides the center of mass position Co in the link coordinate system({L}):

Co = xL̂x + yL̂y + zL̂z

and the inertial tensor in a coordinate system parallel to the link coordinate system, that has its
origin in the center of mass (Co). Using these quantities, the inertial properties can be inserted
in the urdf under the <inertial> tag.

However, due to the different conventions regarding the products of inertia that are explained
in the appendix (section 8.3), the products of inertia are inserted using the opposite sign.

At this point, it is important to state a problem regarding the inertial properties of the
actuators, and in particular, the parts of the actuators that have a different velocity from the link
that they actuate. While there is a <mechanicalReduction> sub-element in the <transmission>
tag in the urdf, there is no way to insert the inertial properties of the actuator. In the appendix,
in section 8.4, it is proved that the inertia of the actuator cannot be included in the link inertia
in the general case. For this reason, the actuator inertia, while contributing in the dynamics
of the leg in real life, is neglected in the simulations.

The inertia, as it is visualized in the gazebo simulation environment, is presented in figure 3.
In the appendix, in section 8.2, the inertial properties of the parts, as calculated from solidworks,
are included for the sake of thoroughness.

Figure 3: Inertial of the leg as visualized in gazebo.

2.2.2 Remaining joint properties

The remaining joint properties are the joint static friction and damping, which are set to zero,
and the velocity and effort limits.

Joint velocity limit: From the dataset4, the velocity limit is around 3709 rpm = 388.4 rad/s.

4https://tmotor.en.made-in-china.com/product/wjOmskNcpHhu/China-T-Motor-U8-Lite-Kv100-

Efficiency-BLDC-Aircraft-Uav-Quadcopter-Motor.html

8

https://tmotor.en.made-in-china.com/product/wjOmskNcpHhu/China-T-Motor-U8-Lite-Kv100-Efficiency-BLDC-Aircraft-Uav-Quadcopter-Motor.html
https://tmotor.en.made-in-china.com/product/wjOmskNcpHhu/China-T-Motor-U8-Lite-Kv100-Efficiency-BLDC-Aircraft-Uav-Quadcopter-Motor.html

Joint torque limit: From J. Valvis’s thesis [3], the maximum current that can flow through the
motor in steady state is imax = 13.36A. For the estimation of the motor constant, the torque-
current characteristic was plotted using the motor manufacturer data, which is presented in figure
4:

Figure 4: Motor constant estimation.

Using the above information, the maximum steady state5 torque is:

τmax = Kt · imax,continuous = 0.0754 · 13.36 =>

τmax,continuous = 1.007344Nm

Reductions of motors The actuator mechanical reductions are presented in table 4.

Table 4: Reductions of motors.

Ab/Ad (Joint 1) Hip (Joint 2) Knee (Joint 3)
1 : 7 1 : 10 1 : 10

In the URDF, the velocity and torque limits are included at the link level (as seen by the link).
However, the manufacturer provides the aforementioned limits at the motor level. So, the limits
are transformed using the equations (2) and (3).

τmax,continuous,i = kirτmax (2)

ωmax,i =
ωmax

kir
(3)

where kir is the reduction of the i-th actuator.

5The maximum current is greater if the current flows in short bursts. ipeak = 19.84A for ∆T ≤ 720s. This can
be observed in Valvis’s thesis [3], in figure 5.17.

9

2.3 Collision Properties

The collision geometry is comprised of geometric primitives that surround the whole robot. During
the placement of each joint in the urdf file, the appropriate geometry was created. The results are
presented in figures 5b and 5a.

(a) Front view of the whole leg. (b) Focused view on the foot.

Figure 5: Collision Geometry.

Apart from the collision geometry, the contact dynamical parameters must be set. These
parameters depend on the contact model. Generally, a spring-damper ground interaction model
was used with the addition of friction. In the simscape simulation this was achieved using a sphere
to plane contact from the contact library6. In the gazebo simulation, the spring (Kp) and damping
(Kd) parameters along with the static friction (µs) of the end effector were set in the <collision>
element. The coefficient of restitution and torsional friction were set to zero. Thus, the contact
parameters are presented in the table 5:

Table 5: Model collision properties.

Kp 1e4
Kd 1e2
µs 0.7

6https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-

library

10

https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-library
https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-library

3. Leg Kinematics

This section contains the kinematic analysis of the leg.

3.1 Direct Kinematics

Using the DH parameters (Table 2), the homogeneous transformation matrices i−1Ti are given
by7:

i−1Ti =


c(θi) −s(θi) 0 Li−1

c(ai−1)s(θi) c(ai−1)c(θi) −s(ai−1) −s(ai−1)di
s(ai−1)s(θi) s(ai−1)c(θi) c(ai−1) c(ai−1)di

0 0 0 1

 (4)

The resultant matrices are presented below:

WT0 =


0 −1 0 LB0

0 0 −1 0
1 0 0 H
0 0 0 1

 (5)

0T1 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 −L01

0 0 0 1

 (6)

1T2 =


cos(θ2 − π/2) −sin(θ2 − π/2) 0 0

0 0 −1 −L12

sin(θ2 − π/2) cos(θ2 − π/2) 0 0
0 0 0 1

 =


s2 c2 0 0
0 0 −1 −L12

−c2 s2 0 0
0 0 0 1

 (7)

2T3 =


c3 −s3 0 L23

s3 c3 0 0
0 0 1 0
0 0 0 1

 (8)

3TE =


1 0 0 L3E

0 1 0 0
0 0 1 0
0 0 0 1

 (9)

The homogeneous transformation matrix WTE from the world frame to the end effector frame
is:

WTE =W T0 · 0T1(q1) ·1 T2(q2) ·2 T3(q3)︸ ︷︷ ︸
0T3(q1,q2,q3)

·3TE (10)

3.2 Inverse Kinematics

Problem statement:

Let us consider the desired WPD = [Wx,W y,W z]T expressed in the world frame. The desired
orientation is random (R̃) as it is not possible to set both the position and the orientation of the
end effector. This will become apparent in the following analysis. Thus:

WTD =

[
R̃ WPD

01x3 1

]
The purpose of the Inverse Kinematics (IK) analysis is to find the joint angles that result in

the given pose/configuration. Thus:

WTD =W T0 ·0 T3(q1, q2, q3) ·3 TE =>

7Here c(θ) = cos(θ) and s(θ) = sin(θ).

11

0T3(q1, q2, q3)
3TE = (WT0)

−1 ·W TD (11)

where

(WT0)
−1 =

[
(WR0)

T −(WR0)
T ·W P0

01x3 1

]
=


0 0 1 −H
−1 0 0 LB0

0 −1 0 0
0 0 0 1


and

(WT0)
−1·WTD =

[
(WR0)

T R̃ (WR0)
T ·W PD − (WR0)

T ·W P0

01x3 1

]
=

(WR0)
T R̃

 W z −H
LB0 −W x

−W y


01x3 1


The desired position expressed in the 0 frame is:

0PD = [0xD, 0yD, 0zD]T = [W z −H, LB0 −W x, −W y]T (12)

0T3 is given by:

0T3 =


c1s2+3 c1c2+3 s1 L12s1 + L23c1s2
s1s2+3 s1c2+3 −c1 −L12c1 + L23s1s2
−c2+3 s2+3 0 −L01 − L23c2

0 0 0 1

 (13)

The 0TE matrix is:

0T3 =


c1s2+3 c1c2+3 s1 L12s1 + L23c1s2 + c1s2+3L3E

s1s2+3 s1c2+3 −c1 −L12c1 + L23s1s2 + s1s2+3L3E

−c2+3 s2+3 0 −L01 − L23c2 − c2+3L3E

0 0 0 1

 (14)

From equations (12) and (14) the following system { (15),(16),(17) } is obtained :

L12s1 + L23c1s2 + c1s2+3L3E =0 xD (15)

−L12c1 + L23s1s2 + s1s2+3L3E =0 yD (16)

−L01 − L23c2 − c2+3L3E =0 zD (17)

The following analysis will present the procedure to find the solutions to the system and the
constraints that 0PD must satisfy.

Finding θ1 :

(15)s1 − (16)c1 =⇒ L12 =0 xDs1 −0 yDc1 (18)

Using the identity c1 =
√
1− s21 the equation (18) becomes:

(0x2
D +0 y2D)s21 − 2L12(

0xD)s1 + L2
12 −0 y2D = 0 (19)

∆ = 4L2
12(

0xD)2 − 4(L2
12 −0 y2D)(0x2

D +0 y2D)

For a solution to exist ∆ ≥ 0 =⇒

0x2
D +0 y2D ≥ L2

12 (20)

12

And the solution of (19) is

s1 =
2L12(

0xD)±
√
∆

2(0x2
D +0 y2D)

and thus:

θ1 = asin(
2L12(

0xD)±
√
∆

2(0x2
D +0 y2D)

) (21)

As θ1 ∈ [−π/2, π/2], the asin() function has a unique solution. However, due to the presence
of ”±”, there are two solutions. In the programs, it is checked that both solutions satisfy equation
(18).

Finding θ2, θ3 :

For each of the solutions of (21), the following steps are taken:

(16)s1 + (15)c1 =⇒ L23s2 + L3Es2+3 = 0xDc1 +
0 yDs1 ≜ K1 (22)

Rewriting the equation (17):

L23c2 + c2+3L3E = −0zD − L01 ≜ K2 (23)

Equations (22), (23) are the classic IK system for a two link manipulator with the following
solutions:

θ3 = acos(
K2

1 +K2
2 − L2

23 − L2
3E

2L23L3E
) (24)

Which has solutions when:

cos(2.229) ≤ K2
1 +K2

2 − L2
23 − L2

3E

2L23L3E
≤ 1

L2
23 + L2

3E + 2L23L3Ecos(2.229) ≤ K2
1 +K2

2 ≤ (L23 + L3E)
2 (25)

There are two solutions from the equation (24) for θ3 that correspond to: (c3, s3 =
√

1− c23)

(c3, s
∗
3 = −

√
1− c23)


Thus, equations (22) and (23) are rewritten using the first θ3 solution as:[

L3Es3 L3Ec3 + L23

L3Ec3 + L23 −L3Es3

]{
c2
s2

}
=

[
A B
B −A

]{
c2
s2

}
=

{
K1

K2

}
The determinant is :

det = −A2 −B2 = −L23s
2
3 − L2

3Ec
2
3 − L2

23 − 2L23L3Ec3+ = −(L2
23 + L2

3E + 2L23L3Ec3) < 0

As det ̸= 0, there is always a solutions to the system. So:

c2 = −AK1 +BK2

det

s2 =
−BK1 +AK2

det

θ2 = atan2(s2, c2) (26)

13

While the second solution is:

c∗2 = −−AK1 +BK2

det

s∗2 =
−BK1−AK2

det

θ∗2 = atan2(s∗2, c
∗
2) (27)

Using only the WPD, without defining the end - effector orientation, all the joint angles are
fully defined.

3.3 Direct Differential Kinematics - Geometric Jacobian

The geometric jacobian can be computed by the following formula:

JV =

[
0JV,linear
0JV,angular

]
=

[
0z1 ×0 P1

E
0z2

0zn ×0 Pn
E

0z1 0 0zn

]
(28)

where:
0zi =

0 Ri
izi =

0 Ri[0, 0, 1]T (29)

and:
0Pi

E =0 PE −0 Pi (30)

The rate of change of the orientation is of no interest8, so only 0JV,linear will be computed.
From now on, 0JV,linear = JV . Using the equation (28), the geometric jacobian is:

0JV =

L12c1 − L23s1s2 − L3Es1s23 (L3Ec23 + L23c2)c1 L3Ec1c23
L12s1 + L23c1s2 + L3Ec1s23 (L3Ec23 + L23c2)s1 L3Es1c23

0 L23s2 + L3Es23 L3Es23

 (31)

To change the reference frame of the jacobian, the equation (32) is used:

WJV =W R0 ·0 JV (32)

The following is also true:

det(WJV) = det(WR0)det(
0JV) = det(0JV)

So the singularities of the jacobian do not change.

3.3.1 Singularities

To find singularities in the Jacobian, the determinant is computed:

det(JV) = L23L
2
3E(c2c

2
3 − c2 − c3s2s3)− L2

23L3Es2s3 (33)

Singularities occur when:

• s3 = 0. Due to angle limits, this results in q3 = 0. This is the known singularity resulting
from an RR manipulator being straight9.

• When the following equation is satisfied:

−L3Es3+2 − L23s2 = 0 (34)

There are infinately many solutions to this equation, that satisfy:

q3 = −q2 − sin−1

(
L23

L3E
sin(q2)

)
(35)

q3 = −q2 + sin−1

(
L23

L3E
sin(q2)

)
+ π (36)

This singularity expresses the law of sines10 and has the following geometric meaning:
8To set the 6DOFs of the end effector, 6 actuators are needed at least.
9If the 2nd and 3rd degree of freedom are seen as an RR manipulator

10The law of sines is the following:
s3−2

L23
=

s2

L3E

14

(a) Geometric meaning of equation (34).
(b) Lost degree of freedom due to sec-
ond singularity.

Figure 6: Geometric meaning of second singularity.

15

4. Gazebo Simulation Framework

To create the simulation framework, two packages were created: leg description and leg control.
The former contains the leg urdf file and a static library (Leg) that contains a class responsible for
logging the states of the robot and provides methods for the robot kinematics. The latter contains
the controller implementations.

4.1 leg description package and Leg library

The package contains a .xarco with the leg description. There is a launch file called visual.launch
in order to verify the resulting urdf in rviz.

The Leg library contains the state (joint angles) q, joint velocities qt, the end effector position
Xe, the Geometric Jacobian Jv and finally the number and the solutions from the last inverse
kinematics. There are a callback method (PoseCallback) to log the state of the robot, methods
to get the protected attributes (e.g. getSols, getState), methods for kinematic calculations (eg
IK, DK) and methods to calculate the true distance between poses11.

Figure 7: UML diagramm of Leg class.

4.2 Leg control package

This package contains the leg task controllers (Position Controller, Trajectory Controller, Effort
Controller) and a high level controller (HLC) in order to control the leg.

This package introduces the following nodes:

• legHLC : This node acts as a high-level controller, switching between task controllers. The
source code is in legHLC.cpp.

• legContact : This node subscribes to the \end effector collision topic and gets the foot con-
tact forces. Then, it transforms these forces in the world frame12 and publishes the to
\contact force topic. The source code is in legContact.cpp.

This package introduces the following services for the legHLC node:

11As the second joint is continuous there are two distances between two angles. A naive subtraction ∆θ =
θto − θfrom may give large angular distances.

12Normally, it is possible to specify the frame of reference in the gazebo ros bumper plugin, but it didn’t seem
to work. So this node is a work around.

16

• ControllerSelector : Select which low level controller to activate at a given moment. There
is a Custom .srv file, named ControllerSelector.srv defining the service.

Usage: The user selects which task controller to activate by sending a number between 1
and 3. In the current implementation, the following correspondence takes place: 1: Position
Controller; 2: Trajectory Controller; 3: Effort Controller.

• GoalSet : Set a target for the position controller. There is a Custom .srv file, named pos.srv

defining the service. .

Usage: The first input to the service call is a Boolean, to specify whether the target is in
joint-angle space (False) or in Cartesian space (True). The other three inputs are either the
desired joint angles [q1,d, q2,d, q3,d] or the coordinates of the desired position in the world
frame [xd, yd, zd] depending on the first input.

• SetEllipse: Set ellipse parameters for the trajectory controller. There is a Custom .srv file,
named ellipse.srv defining the service.

Usage: The inputs are the ellipse parameters (a, b, DX, DY, dθ) for an ellipse at the Y Z
plane, which is centered at WP = [LB0 + L12, DY, DZ] . The parameterization used is
the polar form of the ellipse, where the radius r(θ) is given by the equation (37).

r(θ) =
ab√

a2sin2(θ − dθ) + b2cos2(θ − dθ)
(37)

Along with the ellipse parameters, the user specifies the period of the ellipse and the times
that the trajectory will be repeated.

• SetEffort : Set desired end-effector wrench for the effort controller. There is a Custom .srv
file, named wrench.srv defining the service.

Usage: The inputs are the desired exerted force components of the end effector specified in
the world frame of reference: [WFx,d,

WFy,d,
WFz,d].

The launch file LegFramework.launch is the default launch file of the package and opens up
the rqt gui node (with a custom perspective), the gazebo simulator and the custom-made nodes
that act as the leg controller.

Figure 8 is a concise UML diagram of the implemented controllers in order to showcase the
structure of the framework.

17

Figure 8: UML diagrams of the controller classes. (The task controllers have a reference to the
same instance of Leg).

18

4.2.1 Framework GUI and Documentation

For the GUI, rqt gui13 is used. There are two Service Caller windows, as calling services is
frequent. Also, there is Dynamic Reconfigure window, to change both the parameters of the low
level controllers and the physics simulation parameters. Along with these functionalities, there is
a rviz window, to visualize the leg, a multiplot window and an rqt plot window for user specified
plots.

Figure 9: Gazebo Simulation Framework GUI.

Also, it must be noted that the whole framework has been documented14. In figure 10 the doc-
umentation for the method generateQwp of the TrajectoryController is presented as an example.

Figure 10: Ros framework documentation example.

13http://wiki.ros.org/rqt_gui
14The documentation is Doxygen compatible.

19

http://wiki.ros.org/rqt_gui

5. Simscape Simulation Framework

This section gives information about the structure of the matlab - simscape simulation framework.
The matlab - simscape simulation framework is made up of a collection of classes that model

the controllers and the robot, a class that handles the simulation and the simscape simulation.
The user can set up a series of tasks for the leg and then simulate them. This is done by using

methods from the controller classes directly. It is possible to run only the custom-made simulation
(using the analytical equations that are analysed in section 6), only the simscape simulation, or
both.

A basic matlab script to set-up the simulation is included in the appendix, in section 8.5.
All the code has been documented, so the user can understand how it works using the command

doc. For example, the documentation for the position controller

1 doc Pos

gives the following output:

Figure 11: Simscape framework documentation.

5.1 Framework structure

The structure of the framework is presented in the UML diagram in figure 12.
Firstly, the robot abstract class is the parent class for all robots to be modeled15 and it mainly

contains abstract methods for the robot kinematics. robot is inherited by the legRobot class,
that models the Argos’s leg. The robot class has the sim method, that implements the robot
forward dynamics in order to run simulations using the matlab ode solvers.

There are also controller classes that implement similar controllers to the ros control ones in
order to compare the two frameworks. The controller classes have methods to set up new targets
(reference points), methods to set the state of the controller (current errors, internal timers) that
are useful for the simulation handler class, and the control simmethod in order to run simulations
using the ode solvers. All the controller classes share the same instance of the legRobot object, so
the state of the robot is synchronized16. Also, the trajectory controller class (trajControl) has
a trajectory generation class (trajectoryGen) that creates polynomial trajectories in a manner
similar to the joint trajectory controller of ros control.

The simulation handler class is the simulation preparation class. This class contains all
the controllers and the same instance of the legRobot object. It contains methods to set up the
simulation parameters and run the simulations.

15To set up the right simulations, a model for a two-link manipulator was developed, so the robot parent class
made the transition from the two-link robot to the leg easier.

16The same result is achieved using references in C++. In matlab classes, the robot parent class inherits the
handle class.

20

Figure 12: UML diagram for the matlab-Simscape simulation framework.

21

5.2 Simscape simulation

The simscape simulation is presented in figure 13. The references and the parameters of the
controllers are imported from the matlab workspace. That is why, running a script similar to
1 is a prerequisite for running a simulation using this framework.

Figure 13: Simscape simulation: Overview.

The plant was created by importing the urdf, setting the motor limits and the ground interac-
tion model. All the states and contact forces are logged and exported to the workspace after the
simulation. This is done in the States to workspace block.

The controller block, which is presented in figure 14a, has three separate controllers and a
multiport switch that enables the command of the currently selected controller to drive the system.
Also, three separate subsystem, which are included using the subsystem reference block17, were
created. An example is presented in figure 14b. The custom subsystems are:

• PositionLinkController,

• TrajectoryLinkController,

• shortest angle diff,

(a) Controller block. (b) Custom Subsystem.

Figure 14: Simscape simulation components.

17https://www.mathworks.com/help/simulink/ug/referenced-subsystem-1.html

22

https://www.mathworks.com/help/simulink/ug/referenced-subsystem-1.html

6. Analytical Modeling

6.1 General Methodology

For the derivation of the analytical dynamical equations, the Euler-Lagrange method was used.
The process is as follows:

1. Calculate the Kinetic energy (T) of the system.

2. Calculate the Potential energy (U) of the system.

3. Calculate the Lagrangian: L = T − U . (leg eom.m)

4. Find the following derivatives (EL derivatives.m):

∂

∂t

(
∂(L)
∂q̇

)
∂(L)
∂q

where q is the vector of generalized coordinates. Here q is the joint angle vector. The
equations of motion are given by:

∂

∂t

(
∂(L)
∂q̇

)
− ∂(L)

∂q
= f (38)

where f is the generalized force. It contains:

• the coulomb friction: Fs sign(q̇) = diag{Fs,1, ..., Fs,i, ..} · sign(q̇)
• damping forces: D q̇ = diag{D1, ..., Di, ..} · q̇
• forces due to interactions with the environment: JT (q)he, where JT is the geometric
Jacobian and he is the wrench vector from the end-effector to the environment

• motor inputs: τ

Usually, these equations are more useful in a matrix form, that takes the following form:

B(q)q̈+C(q, q̇)q̇+G(q) +Dq̇+ Fssign(q̇) + JT (q)he = τ (39)

5. Collect the terms to get the matrix form of the equations. (EL collect.m)

Having the dynamics in the form of equation (39), one can easily simulate the system using
equation (40). (This form is compatible with the matlab solvers):

d

dt

[
q
q̇

]
=

[
q̇

B(q)−1 · (τ −C(q, q̇)q̇−G(q)−Dq̇− Fssign(q̇)− JT (q)he)

]
(40)

Regarding the friction and damping forces, usually only the joint static and viscous friction18

is taken in account in robotics, and thus these forces can be calculated if the matrices Fs and D
are defined. Both in gazebo and simscape, one can directly define these matrices. These forces
will be ignored, except if stated otherwise. The interaction force is zero as long as there are no
interactions, such as when the robot is moving in free space. In the static task, more information
will be presented. Thus, initially, one has to find the B,C,G matrices.

18Friction forces that have to do with the end effector and the environment are modelled as an external wrench
he.

23

6.2 Calculating the Lagrangian

The first step is the calculation of the Lagrangian. It was done using the program leg eom.m.
This script is responsible for:

• Defining the transformation matrices i−1Ti (calling Tsimplify.m).

• Load the geometric and inertial quantities of the leg.

• Calculate the positions of the coordinate frame i with respect to the j frame19.

jPi =
jJi(1 : 3, 4) =

[
I3x3 03x1

]
jTi

[
03x1

1

]
(41)

• Calculate the orientation of the coordinate frame i with respect to another j frame

jRi =
jTi(1 : 3, 1 : 3) =

[
I3x3 03x1

]
jTi

[
I3x3
01x3

]
(42)

• Calculate the positions of the center of mass of link i with respect to the 0 frame. From
solidworks, we have irc,i (the position of the center of mass of link i with respect to the
coordinate frame of the link i).

0xc,i =
0Pi +

0Ri
irc,i (43)

• Calculate the angular velocities of the coordinate frame i with respect to the 0 frame. These
are the same as the angular velocities of the center of mass of the link i with respect to the
0 frame.

0ωi =
0ωi−1 +

0Ri [0, 0, q̇i]
T (44)

• Calculate the linear velocities of the coordinate frame i with respect to the 0 frame.

0ui =
0ui−1 +

0ui−1
i︸ ︷︷ ︸

=0

+ [0ωi−1]
x 0Ri−1

i−1Pi (45)

• Calculate the velocities of the center of mass of link i with respect to the 0 frame.

0uc,i =
0ui +

0ui
c,i︸︷︷︸

=0

+ [0ωi]
x 0Ri

irc,i (46)

Having calculated these quantities, it is easy to write the Kinetic energy as:

T =

3∑
i=1

[
1

2
mi

0uT
c,i

0uc,i +
1

2
0ωT

i
0Ri Ii (

0RT
i)

0ωi

]
(47)

The potential energy is :

U = −
3∑

i=1

mig
T
0

0xc,i (48)

where g0 = [−g, 0, 0]. Looking at 1b, gravity is indeed looking in the negative x-axis of the
0 frame.

The Lagrangian is the L = T − U

19Indexing via matrix multiplication was done because symfun objects cannot be indexed using parenthesis
indexing

24

6.3 Getting the B,C,G matrices

Getting the derivatives of the Lagrangian can be done using the differentiation functions of the
symbolic package of matlab and takes place in the EL derivatives script. EL collect is respon-
sible for collecting the terms in returning the B,C,G matrices required for the direct dynamics
simulation using equation (40).

Each equation concerning the i-th DOF has the following form:

eqi =
∑
j

bi,j(q)q̈j +
∑
j

ci,j(q, q̇)q̇j +Gi(q) (49)

To get the matrices, the following process is followed for each degree of freedom i:

1. Get bi,j from the coefficients of q̈j in the equation of the i-th degree of freedom. This can
be achieved as the polynomial of q̈j , p(q̈j) has degree deg(p(q̈j)) ≤ 1. The latter fact can be
observed from (49).

2. Update the equation:

eqnew,1
i = eqi −

∑
j

bi,j(q)q̈j

3. Get ci,j from the coefficients of q̇j in the new equation of the i-th degree of freedom eqnew,1
i .

The polynomial of q̇j , p(q̇j) has degree deg(p(q̇j)) ≤ 2. This fact can be observed from (49).
The polynomial is p(q̇j) = p0 + p1q̇j + p2q̇

2
j . So ci,j is obtained by :

ci,j = p1 + p2q̇j

Generally, there are infinite20 choices for the C matrix.

4. Update the equation:

eqnew,2
i = eqnew,1

i −
∑
j

Ci,j(q, q̇)q̇j

5. The rest are the gravitational terms: Gi(q) = eqnew,2
i

Getting the coefficients is done by the coeffs command of the symbolic toolbox. Getting
the coefficients of the full polynomial for each degree of freedom is done by providing the ’All’
argument.

6.3.1 Validating the methodology

The scripts that were developed carry out all the hard calculations and factorizations, and abstract
the methodology. To debug and validate them, the scripts were used to derive the equations of
motions of simple 1 or 2 degree of freedom manipulators that were studied in the robotics course21.
This was done in the EL validation.m script.

6.4 Validating the Euler Lagrange model

Having ensured that the above programs behave as intended (concerning the calculation of the
relevant matrices), the B(q), C(q, q̇), G(q) matrices for the leg were extracted, using the same
geometric and inertial properties that were passed to the urdf. To validate the whole process,
some basic simulations were conducted. An indicative simulation is presented in figure 15 below.
In this simulation, gravity was neglected, and a sinusoidal input was commanded in every joint
that is given by ui = 0.01sin(6πt) [Nm]. The purpose was to check that matrix extraction

20Siciliano [2], section 7.2.1. For example, a term kq̇1q̇2 in the i-th equation can be distributed in the C matrix
as follows:

ci,1+ = λq̇2

ci,2+ = (k − λ)q̇1

where λ ∈ R.
21http://nereus.mech.ntua.gr/courses/robotics/robotics_pdf/kk/Dynamics.pdf

25

http://nereus.mech.ntua.gr/courses/robotics/robotics_pdf/kk/Dynamics.pdf

process. The solver settings are presented in table 6. It can be observed that the simulations
using the derived equations of motion are identical with the simscape simulations. This is because
similar solver settings were used.

Table 6: Leg initial simulations solver settings for matlab and simscape.

Simulation Abs Tol Rel Tol solver max step
matlab simulation 1e-6 1e-8 ode45 5e− 2
simscape 1e-8 1e-6 ode45 5e− 2

Figure 15: Comparison of angle position histories for the three joints for the simulation of an
actuated leg without the presence of gravity with initial conditions q = [0, 0, 0] and q̇ = [0, 0, 0]
in matlab and simscape. In the right side, there is a focus plot in order to better showcase the
deviation.

26

6.5 Contact Force Modeling

For the analytical modeling, it was attempted to create a contact model similar22 to the one used
previously in Iro’s thesis [1].

(a) Normal force. (b) Friction force.

Figure 16: Simscape contact model.

The previously used model is a ”sphere to plane” contact model23 that comes in the simscape
contact library. In this model, the contact normal force is given by equation (50):

Fn =


Kpypen +Kdẏpen ypen > 0, ẏpen > 0

Kpypen ypen > 0, ẏpen ≤ 0

0 ypen < 0

(50)

where Kp and Kd are the collision properties defined in 5 and ypen is the penetration of the
point of contact (poc), as seen in figure 16a. To model the contact friction, a stick-slip continuous
friction model was used, as in Iro’s thesis [1]. The norm of the contact friction force is given by
the equation (51):

Ff = µFn (51)

where:

µ =


vpoc · µs

vth
vpoc < vth

µs − (vpoc − vth) · µs−µk

0.5vth
vth ≤ vpoc < 1.5vth

µk vpoc ≥ 1.5vth

(52)

The direction opposes the velocity of the point of contact. As the ground is the plane for z = 0:

v⃗dir =
[W vx,

W vy]√
W v2x + W v2y

and thus the friction force is:

F⃗f = Ff ·
[
−v⃗dir
0

]
The graphical interpretation of (52) is shown in figure 17.
Note: In the current implementation, the point of contact coincides with the end effector.

This creates an error in the modeling, as the true point of contact is in the radius of the foot.
This can be seen in figure 18.

22The model is similar and not exactly the same because the simulation results were deemed acceptable using
the current-inexact model. The difference is that in simulink the velocity of the point of contact (poc) used in
the contact model is the true poc velocity while the current implementation uses the end-effector velocity. This is
explained in detail in the current section.

23https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-

library

27

https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-library
https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-library

Figure 17: Stick-slip friction model.

Figure 18: Difference between true point of contact of foot and end effector coordinate frame
origin.

28

6.6 Controller Details

6.6.1 PID controller

Both PID controllers from ros control24 and simulink 25 calculate the command using the fol-
lowing algorithm:

1. eposition = qdesired − q

2. ėposition = (eposition − eposition,last)/Ts, where Ts is the sampling rate.

3.
∫
eposition = eposition · Ts +

(∫
eposition

)
last

4. u = KP eposition +KD ėposition +KI

∫
eposition

Indeed, the z-transform of the above torque command is26:

U(z)

E(z)
= KP +KD

1

Ts

z − 1

z
+KITs

1

z − 1
(53)

6.6.2 Angular Distance

The PID controller calculated the joint angular error (eposition = qdesired−q), which is the angular
distance between the desired joint angle and the current one. This distance27 is calculated as
follows (as qi /∈ R but qi ∈ S):

qtemp = qfinal − qstart + π (54)

qdistance = mod(qtemp, 2π)− π (55)

The correctness of this calculation is evident throught the following example, which is presented
in figure 19. If the initial angular position of a joint is qstart ≈ π − dθ1 and the desired angular
position is qgoal ≈ π+dθ2, then the numeric difference is eposition = qgoal−qstart = 2π−dθ1−dθ2.
This, assuming dθi is small, results in big error value and thus a big torque command. The joint
will be rotated as the blue path in figure 19 indicates. However, it is evident that the optimal
path is the black path of the same figure. Indeed, using (54) and (55):

qtemp = 3π − dθ1 − dθ2

qdistance = −dθ1 − dθ2

Figure 19: Angle distance calculation example.

That way, large values of errors to describe angular distances are avoided, resulting in smoother
movement and smaller torque commands.

24http://docs.ros.org/en/indigo/api/control_toolbox/html/classcontrol__toolbox_1_1Pid.html
25https://www.mathworks.com/help/simulink/slref/pidcontroller.html, using an unfiltered derivative and

forward euler integration method
26Which is the exact same formula in simscape when using an unfiltered derivative and forward euler integration

method
27This is important for the second joint.

29

http://docs.ros.org/en/indigo/api/control_toolbox/html/classcontrol__toolbox_1_1Pid.html
https://www.mathworks.com/help/simulink/slref/pidcontroller.html

6.6.3 Trajectory Generation

The trajectory generation implements the following algorithm (generateQwp method in the ros
framework, generateQ in the matlab framework). The input is a set of cartesian waypoints (a
3 ×N vector containing positions in the world frame) and the timestamp corresponding to each
waypoint.

1. Starting from the first waypoint:

(a) Find the solutions to the inverse kinematic (IK) problem. If there are none, the
trajectory fails.

(b) Select the best solution from IK, using equation (56).

qi = argmin(|| fdist(qsol,qi−1) ||) (56)

where qi is the best solution for the i-th waypoint, qsol are the current solutions of the
IK problem and fdist is the joint angular distance function28 as described in section
6.6.2. For the first waypoint, the algorithm the ”previous” solution is the current state
of the robot.

After doing the above for all the waypoints, a 3×N matrix with joint angle waypoints has
been created.

2. The mean velocity of the i segment (from qi−1 to qi) is calculated:

ω̄i =
qi − qi−1

dti

3. If the mean velocity of two consecutive segments has the same sign (the same direction),
then the algorithm sets the desired velocity of the middle waypoint as the mean of the mean
velocities:

q̇d,i = (ω̄i + ω̄i+1)/2

Otherwise, the desired velocity of the waypoint is set to zero.

6.6.4 Trajectory Controller

Having the generated trajectories qd(t), q̇d(t) the controller is (in a discrete form) :

u = KP (qd(t)− q) +KD(q̇d(t)− q̇) +KI

∫
(qd(t)− q)dt (57)

6.6.5 Effort Controller

The effort controller is:

τ = JT
v hd +G(q) (58)

and thus, the system in steady state , where q̇ = 0 and q̈ = 0 will compensate the gravitational
force and exert the desired wrench in the environment.

28It returns a vector of distances for each joint.

30

7. Comparing the Frameworks

In this section, the frameworks are compared in four tasks:

• Position Control task

• Trajectory Control task (dynamic task)

• Effort Control task (static task)

• Combined task

The system geometric, collision properties are the ones presented in section 2 in tables 1, 3,5.
The starting position of the leg for all29 the simulations is the zero position of the leg, which is
for q = [0, 0, 0]T , and is shown in figure 20:

Figure 20: Zero position of the leg.

The solver settings30 are presented in tables 7 and 8. A more refined max step was chosen for
the custom simulation because the simulation timestamps must be close to the moment that a
new commands is issued by the controller.31

Table 7: Leg simulations solver settings for matlab and simscape.

Simulation Abs Tol Rel Tol solver max step
matlab simulation 1e-6 1e-8 ode45 1e− 4
simscape 1e-8 1e-6 ode45 2e− 4

Table 8: Leg simulations solver settings for gazebo.

Simulation solver max step erp
gazebo world 0.001 Default value: 0.2

29Apart from the effort control simulation.
30The erp solver setting for ODE is presented here: https://ode.org/ode-latest-userguide.html#sec_3_7_0
31A controller with an update rate of 1ms, should update the commands at tupdate = 0, 1, 2, ... [ms] . If the

simulation max step is 1ms, then the solution timesteps could be t = 0, 0.5, 1.5 ... [ms], due to the internal workings
of matlab ode solvers, that refine the timestep to achieve the desired tolerances. In the current implementation, this
shift would cause the controller to update half a millisecond later. This delay results in large errors. By refining
the solution max step parameter, these errors decrease.

31

https://ode.org/ode-latest-userguide.html#sec_3_7_0

7.1 Position Control Comparison

For this simulation, the initial conditions are: q = [0, 0, 0]T , q̇ = [0, 0, 0]T and desired positions:
qd = [0, 0, 0]T . In the following figures (21, 22, 23, 24,25, 26) the results from the three simulations
are compared.

Figure 21 shows that the simulations are very close to each other. However, big steady state
errors are observed. This is because the gains are set randomly at Kp = 10, Kd = 1.

Figure 22, is a deviation plot. The initial difference is due to synchronization errors between
the gazebo and matlab simulations and ros intrinsic32 delays33. The maximum simulation error
percentage34 is of the errors is around 2.5%, for the 3rd joint. It can be observed, that matlab
and simulink simulation errors are less significant.

In figure 23 the joint velocities are compared for completeness. Figure 24 shows the torque
histories of the actuators for the position control task and figure 25 focuses on the transient
response. Figure 26 shows the deviation plot of the torque commands. Again, there is an initial
greater deviation, which exponentially decays. The error percentage between the simulations is
less than 4%.

Figure 21: Comparison of joint position histories for the three joints for the simulation of the
Position Controller in matlab, simscape and gazebo.

32E.G. service call delays. A delay in a controller command in the start of the simulation creates an error that
propagates in the joints. Joint 1 is affected more notably, as it is the first joint of the leg.

33The exponential decay of the error indeed supports this explanation. As seen when simulating observers in
control systems, small differences in initial conditions decay exponentially. The same is true for synchronization
errors.

34Where the simulation error percentage for each joint is:

% simulation error =

∣∣∣∣ (max errori)

(max amplitudei)

∣∣∣∣

32

Figure 22: Deviation plots of joint position histories for the three joints for the simulation of the
Position Controller in matlab, simscape and gazebo.

Figure 23: Comparison of joint velocities histories for the three joints for the simulation of the
Position Controller in matlab, simscape and gazebo.

33

Figure 24: Comparison of actuator torque histories for the three joints for the simulation of the
Position Controller in matlab, simscape and gazebo.

Figure 25: Focused plot, for comparison of actuator torque histories for the three joints for the
simulation of the Position Controller in matlab, simscape and gazebo.

34

Figure 26: Deviation plots of actuator torque histories for the three joints for the simulation of
the Position Controller in matlab, simscape and gazebo.

35

7.2 Trajectory Control Comparison

For this simulation, the initial conditions are: q = [0, 0, 0], q̇ = [0, 0, 0] and the desired ellipse is
described by the following equations as already discussed:

r(θ) =
ab√

a2sin2(θ − dθ) + b2cos2(θ − dθ)

WP = r(θ)

 0
cos(θ)
sin(θ)

+

LB0 + L12
DY
DZ


and the parameter values are presented in the table 9.

Table 9: Ellipse parameters.

a 0.15 b 0.06
DY 0.11208 DZ 0.105
dθ 0 T 5

Firstly, the reference trajectories are compared in figure 27 and it can be observed that two
trajectories are the same35.

Figure 27: Comparison between the generated reference trajectories in matlab/simscape and
gazebo.

In the following figures (28,29, 30, 31,32) the results from the three simulations are compared.
The errors in figures 29 and 32 again show a big initial difference between the gazebo and matlab
simulations. This deviation stems from ros intrinsic delays and from the non perfect synchro-
nization of the data. Indeed, after some time the errors drop significantly, even though trajectory
tracking is a dynamic task. The position simulation error percentage after the initial difference
(t > 1s) is less than 0.2% across all joints while the torque simulation error percentage is is less
0.5% across all joints .

35In figure 27, the reference trajectory between matlab and gazebo seem to differ. But, the units are 1e− 17rad.
So q1,d is practically zero.

36

Figure 28: Comparison of joint position histories for the three joints for the simulation of the
Trajectory Controller in matlab, simscape and gazebo.

Figure 29: Deviation plots of joint position histories for the three joints for the simulation of the
Trajectory Controller in matlab, simscape and gazebo.

37

Figure 30: Comparison of joint velocities histories for the three joints for the simulation of the
Trajectory Controller in matlab, simscape and gazebo.

Figure 31: Comparison of joint torque histories for the three joints for the simulation of the
Trajectory Controller in matlab, simscape and gazebo.

38

Figure 32: Deviation plots of joint torque histories for the three joints for the simulation of the
Trajectory Controller in matlab, simscape and gazebo.

39

7.3 Effort Control Comparison

For this simulation, the initial conditions are: q = [−0.0025,−1.1899,−1.2599]T , q̇ = [0, 0, 0]T

and desired wrench is: hd = [0, 0,−100]T . The initial stance of the leg is shown in figure 33.

Figure 33: Leg starting position for effort control test.

In the following figures (34, 35, 36, 37, 38, 39, 40) the results from the three simulations are
compared. The position error is greater, as seen in figure 35. That is because there is no position
controller to drive the errors to zero. Thus, the initial difference, which is a result of the ros service
delay, does not decay. In addition, some errors between the matlab simulations and gazebo seem
to increase over time. That is because the stick slip model, which is used in simscape and in
the custom simulation, doesn’t make the velocity zero, as can be seen in figure 17.

Figure 34: Comparison of joint position histories for the three joints for the simulation of the
Effort Controller in matlab, simscape and gazebo.

40

Figure 35: Deviation plots of joint position histories for the three joints for the simulation of the
Effort Controller in matlab, simscape and gazebo.

Figures 36 and 37 show the velocity histories of the joints. The transient response (figure 36)
is similar across all frameworks. However, in gazebo, the steady state of joint velocities of joints
2 and 3 are ten times higher (shown in figure 37). The numerical values are presented in table 10.

Important: The velocities that are extracted from the legjoint states topic, which is the
ros topic that gazebo publishes the leg states, do not seem to be the correct velocities.

Firstly, the angular joint positions in gazebo have a much smaller inclination (almost zero)
compared to the joint velocities in matlab and simscape, even though the reported joint velocities
in gazebo are ten times higher. This can be observed from a focused joint position plot in figure
38.

Indeed, doing the math, from the velocity plots (figure 37 or table 10), the joint angular
displacements are:

q̄t,1 = −2.26 · 10−5 rad/s −→ ∆q1 ≈ (−2.26 · 10−5) · 0.8 = 1.81 · 10−5 rad

q̄t,2 = 3.59 · 10−3 rad/s −→ ∆q2 ≈ (3.59 · 10−3) · 0.8 = 2.9 · 10−3 rad

q̄t,3 = −8.62 · 10−3 rad/s −→ ∆q3 ≈ (−8.62 · 10−3) · 0.8 = −6.9 · 10−3 rad

However, from the focused position plots (figure 38), the measured joint displacement in joints
are :

∆q1 ≈ −0.00275114 + 0.00270626 = −4.488 · 10−5 rad

∆q2 ≈ −1.20465 + 1.20468 = 3 · 10−5 rad

∆q3 ≈ −1.22289 + 1.22285 = −4 · 10−5 rad

This is because gazebo uses a coulomb friction model36. According to this model, if:

|Ftangential| < µ|Fnormal| (59)

the simulator prevents the contacting surfaces from sliding. In the current simulation, µ = 0.7,
Fn ≈ 50N and thus µ|Fnormal| ≈ 35N while the friction forces are less than 10N .

Conclusion: The true q̇ in gazebo is closer to zero, as the contact point is not moving.
However, the simulator does not publish this joint velocity.

36http://www.ode.org/ode-latest-userguide.html#sec_3_11_1

41

http://www.ode.org/ode-latest-userguide.html#sec_3_11_1

Figure 36: Comparison of transient response of joint velocities for the three joints for the simulation
of the Effort Controller in matlab, simscape and gazebo.

Table 10: Steady state velocity values for static effort control test.

qt,1 qt,2 qt,3
Gazebo 2.3e-5 36e-4 86e-4
Simscape 40e-5 8.7e-4 6.4e-4
Custom sim 40e-5 9e-4 6.4e-4

Figure 37: Comparison of steady state of joint velocities for the three joints for the simulation of
the Effort Controller in matlab, simscape and gazebo.

42

Figure 38: Focused comparison of joint position histories for the three joints for the simulation of
the Effort Controller in matlab, simscape and gazebo.

Figure 39 shows the torque histories of the joints. There is a 0.6% difference in the torque of
the second joint between the frameworks, which is the only joint that hasn’t reached its torque
limit. This error is a result of the slightly different positions in every simulation.

Figure 40 shows the contact forces histories. The transient responses of the friction forces
have some differences that are to be expected due to the different friction model used by gazebo.
However, the magnitude of the friction forces are comparable. The normal force has a similar
transient response in all frameworks. The steady state values of the contact normal force are
presented in table 11. The steady state values37 of the normal force have a difference less than
1.5%, while the frictional forces, which use different models, have a difference less than 2.2%.

The normal forces exhibit a difference of about 1.65N between the custom simulation and
gazebo. In the custom simulation, the point-of-contact is the end-effector origin, so the reported
value must be compensated. This is discussed in section 7.3.1.

The difference between Gazebo and simscape is around 0.65N . This may be a results of the
slightly different positions between the simulations, as well as some numerical errors. To validate
the gazebo simulator, the states of the leg q and q̇ as well as the input torque vector τ were
taken from the simulator, and the theoretical interaction force was calculated, and is reported in
the Analytical verification of Gazebo entry, in table 11. There is still a difference of around
0.75N .

Table 11: Steady state contact forces values for static effort control test.

Fn [N] Fx [N] Fy [N]
Gazebo 51.8005 6.1125 -9.0825
Simscape 52.4594 5.9817 -9.0575
Custom sim 53.4656 6.0364 -9.3415
Analytical verification of Gazebo 52.3048 5.9949 -9.1750
Compensated Custom sim 52.5660 5.9471 -8.9943

37Regarding the custom simulation, the compensated value was used for comparison.

43

Figure 39: Comparison of joint torque histories for the three joints for the simulation of the Effort
Controller in matlab, simscape and gazebo.

Figure 40: Comparison of the end effector contact force histories for the simulation of the Effort
Controller in matlab, simscape and gazebo. (The plot doesn’t show the whole experiment, as at
around 5ms, the forces reach a steady state.)

44

7.3.1 Explain contact force difference between simscape and custom contact model

The real contact point is not the end effector origin. The real contact point is given by the following
translation from the end effector, as seen in figure 18:

WPpoc = [0, 0, −Rfoot − yd]

where yd = Fn/Kp is the depth of the contact. The orientation of the end effector is given by
WR3 = WRE . Thus:

EPpoc =
WRT

E
WPpoc

So the transformation matrix from the end effector to the contact point is:

ETpoc =

[
I3×3

EPpoc

01×3 1

]
With the above information, the geometric jacobian of this particular point of contact can be

found using the procedure described in section 3.3.
So, using the joint torques from the custom simulation and the formula (60), the foot - ground

interaction force can be calculated.

h = (JT
poc)

−1(τ −G) (60)

Using the methodology above, the true contract force of the point of contact in the custom
simulation is very close to the simscape contact force. Thus, the difference between the two models
is indeed a result of the point of contact not coinciding with the end effector point in the center
of the sphere of the foot.

45

7.4 Combined Task Comparison

For this simulation, the following task was simulated:

1. Cartesian target for the position controller WP1 = [0.1667, 0.05, 0.08]. The gains for the
position controller are Kp = 10, Kd = 1 for all the joints.

2. Cartesian target for the position controller WP2 = [0.1667, 0, 0.0225] after 1s. After this
step, the foot of the leg is touching38 the ground.

3. Vertical force target of 100N for the effort controller after 1s.

The initial conditions for the matlab and simscape simulation are: q = [0, 0, 0], q̇ = [0, 0, 0].
In gazebo, the foot was initially given the default position control target qd = [0, 0, 0]. This
difference is apparent in figures 43 and 44, as there are notable differences for t < 0.5s. However,
the first task is a position control task with no contact, and thus the simulations will converge at
t = 1s. The comparisons are concerned with the results after t = 1s and the simulation is deemed
acceptable39.

In the following figures (41, 42, 43, 44) the results of the three simulations are compared.
Figures 41 and 42 show that there are slight position errors. These are mainly due to the contacts40

and thus they do not converge, as discussed in the previous experiment. Figure 43 shows the joint
torque histories during the experiment. There seems to be a delay at t = 2s, which is discussed
in section 7.4.1. Figure 44 shows the contact histories and table 12 shows the steady state values
of the normal forces, including the compenstated value from the custom simulation.

Figure 41: Comparison of joint position histories for the three joints for the simulation for a
combined position and effort control in matlab and simscape.

38Without gravity, the sphere of the foot would be tangential to the ground.
39The synchronization of the joint data was done in such a way that the simulations match at t = 1s.
40One contact happens at around t = 1.29s and the second is at around t = 2s, when the effort controller is

activated.

46

Figure 42: Deviation of joint position histories for the three joints for the simulation for a combined
position and effort control in matlab and simscape.

Figure 43: Comparison of joint torque histories for the three joints for the simulation for a com-
bined position and effort control in matlab and simscape.

47

Figure 44: Comparison of the end effector contact force histories for a combined position and
effort control in matlab and simscape.

Table 12: Steady state contact forces values for combined task control test.

Simscape
Contact
Force

Custom simulation
Contact Force

Contact Force
using point of

contact Jacobian

Gazebo
Simulation

Normal Force 50.4603 N 51.1818 N 50.4555 N 50.6283

48

7.4.1 Explain delays between the matlab simulations and gazebo.

A c++ program was developed (legSim.cpp) to call the required services in order to simulate the
effort task. All the wait time of 1s is hard-coded, using the command:

1 ros:: Duration (1).sleep();

After each service call, an information message is displayed in the terminal to inform the user
about the evolution of the task. The terminal output is presented in figure 45. In figure 46 the
results of the the simulation are presented.

From figure 45 it can be observed that there is a 13ms delay41 regarding the controller switching
(loading the effort controllers and unloading the position controllers) and a 7ms delay from the
deployment of the effort controller to issuing the effort command.

Figure 45: Commands line output from the LegSim node.

In figure 46, there is a difference in the transient response of the torque commands. However,
this difference is not due to mistakes in the modeling, but rather a result of normal delays
in the ros ecosystem. During the first delay of 12ms the torque commands keep their previous
values. Then, there is a slight jump because the effort controller is activated, with Fdesired = 0.
The torque commands is :

τ = JTFdesired +G

The torque vector is τ = [1.04247, 0.186749, −0.30101]. Indeed, the gravity vector from the
custom simulation (which has a slightly different position) is: G = [1.0426, 0.1631, −0.2984].
The duration of this ”jump” is 7ms. Thus, this jump is the second delay that was observed from
the command line (the delay from the deployment of the effort controller to issuing the effort
command).

Figure 46: Detailed comparison of joint torque histories for the three joints for the simulation for
a combined position and effort control in matlab, simscape and gazebo.

41The time difference between the position command and the effort controller selection is ∆T = 5.148− 4.135 =
1.013s. But the one second is the task wait time, so the ”unexpected” delay is only tdelay = 13ms.

49

8. Appendix

8.1 Creating the cad model

The design was based on J.Valvis diploma thesis [3]. The goal of this model is to :

• visualize the leg during simulations,

• exactly specify the lengths that affect the leg kinematics,

• estimate the inertial quantities.

Thus, special care was taken in the cad modeling to keep the dimensions that affect the
kinematics of the leg the same as the measured ones and include the main volumes of the leg in
order to get a satisfactory estimate of the inertial properties.

According to the aforementioned thesis [3], the material used for the actuators is aluminum
7075. The cylindrical part of the legs are made of carbon fiber.

Table 13: Materials used.

material solidworks material density [kg/m3]
Aluminum 7075 7075-O (SS) 2810
Carbon fiber thronerl mat vma 2000

The modeled parts are presented in the figures below (Figures 47, 48, 49, 50) The dimensions
that must match the ones on the real leg to achieve the same kinematic behaviour have been
marked.

(a) Connector 1. (b) Connector 2.

Figure 47: Connector parts.

(a) Motor rotor. (b) Motor stator.

Figure 48: Motor parts.

50

(a) Hip. (b) Knee.

Figure 49: Link 2 parts.

(a) Planetary gearbox carrier. (b) Leg and foot.

Figure 50: Rest leg parts.

The measurements from existing leg are presented in table 14. (Lengths are in mm).

Table 14: Measured quantities for the cad modeling of the leg.

Connector 1 4 Knee (link 3) 28.5 (+3?)
Connector 2 30 Leg (D) 38
Hip (W) 45 Leg Length (link 2) 105
Hip (Lc) - Leg Length (link 3) 171
Hip (Lλ) 31 Foot (D) 45

Knee (link 2) 53.5 Foot (Dh) 20.5

Finally, it is desirable for the origin of the coordinate system of the STL models to match the
origin that was specified in 1b and 1a. Thus, after defining a custom origin in the cad model, the
assemblies are saved as a whole part and then the part is exported (saved as) as an STL. Before
exporting the part, some settings must be tweaked according to the figure 51.

51

Figure 51: STL export settings.

In the section 8.2, the inertial properties of the parts, as calculated from solidworks, are
included for the sake of thoroughness.

8.2 Cad model inertial properties from solidworks

Figure 52: Link 1 inertial properties.

52

Figure 53: Link 2 inertial properties.

53

Figure 54: Link 3 inertial properties.

54

8.3 Inertial Conventions

There are two conventions regarding the products of inertia:

• Negative products of inertia:

Ixy = −
∫
V

xyρdV, ...

with:

I =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz


This convention is used in simscape42 and URDFs43.

• Positive products of inertia:

Ixy =

∫
V

xyρdV, ...

with :

I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz


This convention is used in solidworks 44.

If one has the inertia data (Ixx, Ixy, Ixz, Iyy, Iyz, Izz) without knowing which inertia con-
vention has been used, it can be determined if one also has the principal axes45. The eigenvectors
of the inertial tensor must match the principal axes.

42https://www.mathworks.com/help/releases/R2021b/physmod/sm/ug/specify-custom-inertia.html#mw_

b043ec69-835b-4ca9-8769-af2e6f1b190c
43http://wiki.ros.org/urdf/XML/link
44https://help.solidworks.com/2020/English/SolidWorks/sldworks/HIDD_MASSPROPERTY_TEXT_DLG.htm?id=

08ca07d7443c4172beea359efad56a08#Pg0
45https://en.wikipedia.org/wiki/Moment_of_inertia#Determine_inertia_convention_(Principal_axes_

method)

55

https://www.mathworks.com/help/releases/R2021b/physmod/sm/ug/specify-custom-inertia.html##mw_b043ec69-835b-4ca9-8769-af2e6f1b190c
https://www.mathworks.com/help/releases/R2021b/physmod/sm/ug/specify-custom-inertia.html##mw_b043ec69-835b-4ca9-8769-af2e6f1b190c
http://wiki.ros.org/urdf/XML/link
https://help.solidworks.com/2020/English/SolidWorks/sldworks/HIDD_MASSPROPERTY_TEXT_DLG.htm?id=08ca07d7443c4172beea359efad56a08##Pg0
https://help.solidworks.com/2020/English/SolidWorks/sldworks/HIDD_MASSPROPERTY_TEXT_DLG.htm?id=08ca07d7443c4172beea359efad56a08##Pg0
https://en.wikipedia.org/wiki/Moment_of_inertia##Determine_inertia_convention_(Principal_axes_method)
https://en.wikipedia.org/wiki/Moment_of_inertia##Determine_inertia_convention_(Principal_axes_method)

8.4 Actuator Inertia

This paragraph investigates whether it is possible to add the inertial properties of the actuator
rotor to the link it actuates, as the URDF format doesn’t include them separately.

According to Siciliano46 ([2]), the kinetic energy of link i is given by equation (61) and the
kinetic energy of the rotor of the actuator i is given by equation (62) (it is assumed that the
actuator i is connected to link i− 1):

Tli =
1

2
mli q̇

TJ
(li)T
P J

(li)
P q̇+

1

2
q̇TJ

(li)T
A Rli(

liIli)R
T
liJ

(li)
A q̇T (61)

Tmi =
1

2
mmi q̇

TJ
(mi)T
P J

(mi)
P q̇+

1

2
q̇TJ

(mi)T
A Rmi

(miImi
)RT

mi
J
(mi)
A q̇T (62)

The following are true:

J
(li)
P = [J

(li)
P1

... J
(li)
Pi

0 ... 0] (63)

J
(li)
PK

=

{
zk for a prismatic joint

zk × (pli − pk) for a revolute joint
(64)

J
(mi)
P = [J

(mi)
P1

... J
(mi)
Pi−1

0 ... 0] (65)

J
(mi)
PK

=

{
zk for a prismatic joint

zk × (pmi − pk) for a revolute joint
(66)

Generally pmi
̸= pli , where pli is the position of the center of mass of the link i and pmi

is

the position of actuator. Thus J
(mi)
P ̸= J

(li−1)
P .

Also :
J
(mi)
A = [J

(mi)
A1

... J
(mi)
Ai

0 ... 0] (67)

J
(mi)
AK

=

{
J
(li)
AK

for j ̸= i

krizmi
for j = 1

(68)

It must be investigated if there is an I ′i such that:

J
(li)T
A Rli(I

′
i)R

T
liJ

(li)
A = J

(mi)T
A Rmi(

miImi
)RT

mi
J
(mi)
A (69)

If there is such an I ′i, then it is possible to directly add I ′i to the link i inertia. In the following
investigation, the frame of link i and actuator i are parallel, so Rmi

= Rli = R and zmi
= zi.

The RHS of the equation (69) is:
[
J
(li)T
A1

]
1x3

...

kri

[
J
(li)T
AK

]
1x3

01x3

R(miImi)R
T︸ ︷︷ ︸

RIRT
3x3

[[
J
(li)
A1

]
1x3

, . . . , kri

[
J
(li)
AK

]
1x3

, 01x3

]

And finally:

[
J
(li)T
A1

]
1x3

RIRT
[
J
(li)
A1

]
1x3

. . . kri

[
J
(li)T
A1

]
1x3

RIRT
[
J
(li)
AK

]
1x3

0

...
. . .

... 0

kri

[
J
(li)T
AK

]
1x3

RIRT
[
J
(li)
A1

]
1x3

... k2ri

[
J
(li)T
AK

]
1x3

RIRT
[
J
(li)
AK

]
1x3

0

0 ... 0 0


If in the above equation, the variables are set to kri = 1 and I = I ′i in order to get the LHS of

the equation (69):

46The symbols used by Siciliano are adopted in the following text and their definitions are not repeated for
brevity.

56



[
J
(li)T
A1

]
1x3

RI′iR
T
[
J
(li)
A1

]
1x3

. . .
[
J
(li)T
A1

]
1x3

RI′iR
T
[
J
(li)
AK

]
1x3

0

...
. . .

... 0[
J
(li)T
AK

]
1x3

RI′iR
T
[
J
(li)
A1

]
1x3

...
[
J
(li)T
AK

]
1x3

RI′iR
T
[
J
(li)
AK

]
1x3

0

0 ... 0 0


Thus, there is no I ′i that satisfies the equation (69). So, the inertia of the rotor cannot be

included in the inertia of the link. Intuitively, if the i-th rotor inertia is included in the inertia of
the i-th link as k2i,rIrotor,i, then this ”equivalent” inertia will be in effect even in rotations caused
by previous actuation units.

For the example, if the actuator i− 1 in figure 55 (whose axis of rotation is parallel to the axis
of rotation of actuator i, as indicated by the double lines) causes links i− 1 and i to rotate, then
the rotor inertia should not be multiplied by k2i,r.

Figure 55: Actuator rotor Inertia. (Rotors are shown in red color.)

This fact has been observed in this post47.

47https://github.com/ros/urdfdom/issues/78

57

https://github.com/ros/urdfdom/issues/78

8.5 Basic simulation in the simscape framework

A basic matlab script to run the simulation is presented below in listing 1. In this script:

1. The user sets up some simulation parameters (like sampling rate and controller gains),

2. creates the controller and simulation handler objects,

3. activates the custom-made simulations (s.customSimulationsSwitch(true)),

4. sets up the task they want to simulate, creates the corresponding events, and

5. runs the simscape simulation

1 %% Simulation paramters: ------------------------

2 Tsampling = 1e-3;

3

4 %set K for class implementation:

5 Kp = [10;10;10];

6 Kd = [1;1;1];

7 Ki = 0*[1;1;1];

8 K = [Kp,Kd,Ki];

9

10 %% Set up simulation: --------------------------

11 r= legRobot(tmax =1.007344*[7;10;10]);

12 qinitial =[0;0;0]; %set initial conditions for simscape

13

14 PC = PosControl(r,Tsampling ,K); %Position Controller

15 TC = TrajControl(r,Tsampling ,K); %Trajectory Controller

16 EC = TrajControl(r,Tsampling); %Trajectory Controller

17

18 % simulation_preparation

19 s = simulation_preparation(r,PC,TC,EC);

20 s.setInitialConditions ([0;0;0;0;0;0] ,0);

21 s.customSimulationsSwitch(true); % false -> do not run custom sim

22

23 %% set up tasks: -------------------------------

24 PC.setTarget ([0.1667;0.3;0.5]);

25 s.setEvent (0,1,1);

26

27 %script to set up a 3xN vector x, and a 1xN vector tw. N = #

waypoints

28 testXpos

29 TC.generateQ(x,tw ,1);

30 s.setEvent (1,2,tw(end));

31

32 PC.setTarget ([0.1667;0.3;0.5]);

33 s.setEvent(tw(end)+1,1,1);

34

35 %% Run simscape simulation:

36 [Select_Controller ,Qpos ,TSqd ,TSqtd ,TSh] = s.SimScapeSimulation ();

37 out = sim(’Leg_Simulation_Framework_test_2.slx’ ,[0 s.t_total]);

Listing 1: Basic script to set up and run the matlab/simscape simulations

58

8.5.1 Framework available commands

For each task the user wants to simulate, the user uses the controller methods to set the task
parameters and then they create an event using the command 48:

1 s.setEvent(t_start ,Controller ,dt);

where t start is the start time of the event, Controller specifies the controller that is activated
during the task and dt is the duration of the task. Regarding the controllers, the following
correspondence is true:

1. −→ Position Controller

2. −→ Trajectory Controller

3. −→ Effort Controller

Important: To run the custom-made simulations, the customSimulationsSwitchmethod
must be called, passing true. This method must be called before setting any event!

The user can currently simulate the following tasks:

• Set a joint-angle target for the position controller:

1 PC.setAngleTarget(Qdesired)

where Qdesired is a 3× 1 column vector with the desired joint angles.

• Set a Cartesian target for the position controller:

1 PC.setTarget(Xdesired)

where Xdesired is a 3× 1 column vector with the desired position in the world frame.

• Set a custom trajectory with N waypoints for the trajectory controller:

1 TC.generateQ(Xwp ,Twp ,Tstart)

where Xwp is a 3×N column vector with the desired positions of the waypoints in the world
frame, Twp is the timestamps for each of the waypoints and Tstart is the starting time of
the trajectory.

• Set an ellipse in the Y Z plane for the trajectory controller:

1 TC.generateEllipse(a,b,DX ,Dth ,T,Npoints ,Tstart)

where a, b, DX, dth are ellipse parameters (DX is a 2 × 1 vector specifying the center of the
ellipse in the Y Z plane DX = [DY,DZ]T), T is the period of the trajectory and Tstart is
the starting time of the trajectory. The ellipse parameterization is the following:

r(θ) =
ab√

a2sin2(θ − dθ) + b2cos2(θ − dθ)

WP = r(θ)

 0
cos(θ)
sin(θ)

+

LB0 + L12
DY
DZ


• Set a effort target for the effort controller:

1 EC.setWrench(Hdesired)

where Hdesired is a 3× 1 column vector with the desired force vector in the world frame.

The user has access to the robot states and actuator inputs from the custom simulation using
this command:

1 [t,y,u] = s.getCustomSimData ();

48In this example s is the simulation preparation object. In the following examples PC, TC are the position and
trajectory controller objects respectively.

59

9. References

[1] Ιro Papagiannaki. optimization-based motion planning for quadruped robots, 2022.

[2] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: Modelling,
Planning and Control. Springer Publishing Company, Incorporated, 2010.

[3] Ι Βάλβης. ΘΕΡΜΙΚΗ ΜΕΛΕΤΗ, ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΟΣ Η-
ΛΕΚΤΡΙΚΟΥ ΚΙΝΗΤΗΡΑ ΚΑΙ ΕΝΣΩΜΑΤΩΜΕΝΟΥ ΠΛΑΝΗΤΙΚΟΥ ΜΕΙΩΤΗΡΑ ΓΙΑ Ε-

ΠΕΝΕΡΓΗΣΗ ΤΩΝ ΑΡΘΡΩΣΕΩΝ ΠΟΔΙΟΥ ΤΡΙΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ, 2020.

60

	Contents
	List of Figures
	List of Tables
	Introduction
	Creating a simplified 3D model
	Kinematic Properties
	Geometric Quantities
	Kinematic Limits

	Dynamic Properties
	Inertial Quantities
	Remaining joint properties

	 Collision Properties

	Leg Kinematics
	Direct Kinematics
	Inverse Kinematics
	Direct Differential Kinematics - Geometric Jacobian
	Singularities

	 Gazebo Simulation Framework
	leg description package and "Leg" library
	 Leg control package
	Framework GUI and Documentation

	Simscape Simulation Framework
	Framework structure
	Simscape simulation

	Analytical Modeling
	General Methodology
	Calculating the Lagrangian
	Getting the B,C,G matrices
	Validating the methodology

	Validating the Euler Lagrange model
	Contact Force Modeling
	Controller Details
	PID controller
	Angular Distance
	Trajectory Generation
	Trajectory Controller
	Effort Controller

	Comparing the Frameworks
	Position Control Comparison
	Trajectory Control Comparison
	Effort Control Comparison
	Explain contact force difference between simscape and custom contact model

	Combined Task Comparison
	Explain delays between the matlab simulations and gazebo.

	Appendix
	Creating the cad model
	Cad model inertial properties from solidworks
	Inertial Conventions
	Actuator Inertia
	Basic simulation in the simscape framework
	Framework available commands

	 References

